Chaturvedi et al. (2025)

Prabhutva Chaturvedi^{1*}, Bipina Biju^{2,3}, Kusumlata Goswami¹, Vishal Soni¹, Bijender¹ and Aishwarya Sahu¹

¹ College of Fisheries Science, CCS Haryana Agricultural University, Hisar – 125 004, India ² Faculty of Fisheries Science, Kerela University of Fisheries and Ocean Studies, Kochi, Kerala –682506, India.

³ ICAR-Central Institute of Fisheries Technology (CIFT), P. O. Matsyapuri, Cochin - 682 029, India.

Corresponding Author

Prabhutva Chaturvedi Email: chaturvediprabhutva@gmail.com

Remote Sensing, Artificial Intelligence, Fisheries Management, Vessel Monitoring, IUU Fishing.

How to cite this article:

Chaturvedi, P., Biju, B., Padmanabha, A., Goswami, K., Soni, V. and Dewangan, D. 2025. Applications of Remote Sensing, Sensor Technologies, and Artificial Intelligence in Fisheries Management. *Vigyan Varta* 6 (12): 154-158.

ABSTRACT

The convergence of satellite technology, artificial intelligence, and advanced sensor networks is revolutionizing global fisheries management, creating unprecedented opportunities for sustainable ocean stewardship. This transformation encompasses real-time vessel tracking through Automatic Identification Systems (AIS) and Vessel Monitoring Systems (VMS), AI-powered species identification and catch quantification, and satellite-based habitat monitoring that supports ecosystem-based management approaches. Digital technologies enable comprehensive surveillance of previously unmonitored ocean areas, automated detection of illegal, unreported, and unregulated fishing activities, and data-driven stock assessments that integrate traditional fisheries science with machine learning algorithms. While challenges remain in data quality, technological integration, and capacity building, emerging digital solutions offer scalable pathways toward transparent, efficient, and sustainable fisheries governance in an era of increasing ocean pressures and climate change.

December 2025 154 | Page

INTRODUCTION

he world's oceans, covering over 70% of Earth's surface, have historically remained largely unmonitored due to their vast scale and remote nature. Traditional fisheries management relied observer coverage, periodic research surveys, and voluntary reporting systems that provided incomplete pictures of fishing activities and marine ecosystem dynamics. This monitoring gap has contributed to persistent challenges in combating illegal fishing, managing fish stocks sustainably, and understanding ecosystem-scale interactions.

The digital revolution now underway in fisheries management represents a paradigm shift comparable to the introduction of radar in maritime navigation. Satellite technology, originally developed for navigation communication, has evolved into comprehensive ocean monitoring system that vessel movements, environmental conditions, and fishing activities in near realtime (Chassot et al., 2011). Complementing this spatial intelligence, artificial intelligence and machine learning algorithms process vast datasets to automate species identification, predict fishing behavior, and optimize management decisions.

This technological convergence addresses fundamental challenges in ocean governance: the need for comprehensive monitoring across scales, from individual fishing events to ecosystem-wide patterns, and the integration of diverse data streams into actionable management information. The implications extend beyond fisheries to encompass broader marine conservation, climate monitoring, and sustainable blue economy development.

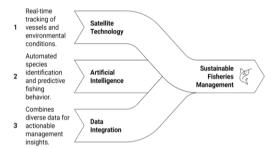


Fig.1 Digital Revolution in Fisheries Management

Satellite Technologies: Eyes on the Ocean

Remote Sensing for Habitat Assessment

Satellite become remote sensing has instrumental in mapping oceanographic conditions that determine fish habitat preferences and distribution patterns. Sea temperature, chlorophyll-a surface concentrations, and ocean color data provide continuous monitoring of primary productivity and thermal structure across ocean basins (Chassot et al., 2011). These measurements ecosystem-based support fisheries management by identifying critical habitats, environmental tracking changes. predicting species distribution shifts under climate change.

Modern satellite sensors deliver daily, highresolution images that enable detection of mesoscale oceanographic features such as eddies, fronts, and upwelling zones that concentrate fish populations. This capability has transformed fisheries science from reactive stock assessments based on historical catch data to proactive habitat monitoring that anticipates changes in fish distribution and abundance.

Vessel Tracking Systems

Two primary satellite-based technologies enable comprehensive vessel monitoring: AIS and VMS. AIS, originally designed for collision avoidance, requires vessels over 300

December 2025 155 | Page

tons to broadcast their identity, position, speed, and course every few seconds. Global Fishing Watch processes over 22 billion AIS messages annually from approximately 60,000 fishing vessels, creating the first comprehensive global map of fishing activity (Kroodsma *et al.*, 2018).

While AIS data represent only 2% of the world's estimated 2.9 million fishing vessels, these vessels account for over 50% of fishing effort beyond 100 nautical miles from shore and up to 80% of high-seas fishing activity (Global Fishing Watch, 2023). The number of AIS-equipped vessels increases by 10-30% annually, expanding coverage and improving data quality over time.

Artificial Intelligence in Fisheries Applications

Automated Species Identification and Catch Monitoring

Electronic monitoring systems equipped with cameras and AI algorithms are transforming documentation and compliance catch monitoring. Traditional observer programs face limitations in coverage, cost, and safety, monitoring less than 2% of global fishing operations. AI-powered video analysis addresses these constraints by automatically species, counting fish, identifying detecting fishing events from onboard camera footage.

Recent advances demonstrate AI systems achieving over 90% accuracy in species identification for specific fisheries, with researchers developing models that can process hours of raw video footage into structured, actionable data without human intervention (Tryolabs, 2025). Edge computing enables real-time processing aboard vessels, reducing data transmission costs and providing immediate feedback to vessel operators and managers.

Machine Learning for Stock Assessment

Traditional stock assessment models face increasing challenges in ecosystems altered by climate change and anthropogenic stressors. Machine learning approaches offer solutions by identifying complex patterns in fisheries data that conventional statistical models may miss. Hybrid models that combine classical stock assessment approaches with gradient boosted trees show improved forecast accuracy for recruitment and spawning stock biomass across multiple fish stocks (Lüdtke & Pierce, 2023).

These AI-enhanced assessments integrate diverse data sources including satellite observations. vessel tracking data, environmental variables. and biological sampling to produce more robust population estimates and fishing mortality projections. The ability to process heterogeneous datasets at scale enables incorporation of previously unused information sources into stock evaluations.

Digital Platforms and Data Integration

Global Fishing Watch and Transparency Initiatives

Watch exemplifies Global Fishing transformative potential of open data platforms in fisheries governance. By making AIS-based fishing activity data publicly available through interactive maps and analytical tools, the platform democratizes access to information previously available only to government agencies (Global Fishing Watch, 2023). This transparency enables civil society organizations, researchers, and fishing communities to monitor compliance with fishing regulations and hold governments accountable for enforcement.

The platform integrates multiple data sources including AIS, VMS (where available), and satellite imagery to create comprehensive

December 2025 156 | Page

pictures of fishing activity. Machine learning algorithms process this information to identify fishing events, classify vessel types, and detect potential illegal activities across all ocean basins.

Regional Implementation and Success Stories

Pacific Islands Fisheries Monitoring

The Pacific Islands region, home to the world's tuna productive fisheries worth most approximately billion annually. \$26 demonstrates advanced implementation of digital monitoring technologies. Recent studies quantifying IUU fishing in the Pacific region utilized diverse datasets including Global Fishing Watch tracking data to provide comprehensive assessments of illegal activities and their economic impacts (MRAG Asia Pacific, 2021).

This integration of satellite technology with traditional monitoring methods enables more accurate estimates of fishing effort and compliance rates across the region's vast ocean territories.

Performance Metrics and Effectiveness

Table 1 presents key digital technologies and their applications in fisheries management:

Technology	Primary Function	Coverage/ Capability	Management Application	Source
AIS Satellite Tracking	Vessel monitoring	60,000+ vessels globally	Illegal fishing detection	Kroodsma et al. (2018)
VMS Monitoring	Regulatory compliance	Government- controlled fleets	Quota enforcement	Global Fishing Watch (2023)
AI Species ID	Automated fish classification	>90% accuracy (specific fisheries)	Electronic monitoring	Tryolabs (2025)
Satellite Remote Sensing	Habitat monitoring	Global ocean coverage	Ecosystem management	Chassot et al. (2011)

Table 1: Key digital technologies transforming fisheries management and their applications. Source: Compiled from various studies.

Table 2 summarizes performance improvements achieved through digital monitoring:

Application	Performance Metric	Improvement vs. Traditional	Implementation Status	Source
AI Species ID	Classification accuracy	90%+ for specific fisheries	Pilot deployment	Tryolabs (2025)
Satellite Tracking	Global coverage	Comprehensive ocean monitoring	Operational	Kroodsma et al. (2018)

ML Stock Assessment	Forecast accuracy	Variable improvement	Research phase	Lüdtke & Pierce (2023)
Habitat Monitoring	Ecosystem coverage	Global daily observations	Operational	Chassot et al. (2011)

Table 2: Performance metrics of digital fisheries monitoring technologies. Source: Compiled from various studies.

Challenges and Future Directions

Despite remarkable advances, digital fisheries monitoring faces significant challenges in data quality, standardization, and integration. AIS data suffer from incomplete coverage of smaller vessels, potential manipulation of broadcast signals, and gaps in satellite reception in remote areas. Integration of diverse data streams requires sophisticated data management systems and standardized protocols that remain under development.

Future fisheries management systems will increasingly integrate with broader Earth system monitoring networks to understand climate impacts on marine ecosystems. Predictive models combining fisheries data with climate projections will enable proactive management approaches that anticipate distribution shifts and abundance changes before they impact fishing communities and ecosystems.

CONCLUSION

Digital technologies fundamentally are transforming fisheries management providing unprecedented visibility into ocean activities and ecosystem dynamics. Satellite tracking systems, AI-powered monitoring, and integrated data platforms create opportunities for transparent, efficient, and adaptive governance of marine The resources. combination of comprehensive vessel monitoring, automated species identification, ecosystem-scale environmental and observations addresses longstanding challenges fisheries science and in Current implementations management. demonstrate significant improvements monitoring coverage, illegal fishing detection, and data-driven decision making. Global

December 2025 157 | Page

Fishing Watch's analysis of over 60,000 vessels provides the most comprehensive view of fishing activity ever assembled, while AI systems achieve human-level accuracy in species identification tasks that previously required extensive manual effort (Kroodsma et al., 2018; Tryolabs, 2025). Machine learning approaches to stock assessment show promise for improving prediction accuracy in rapidly changing marine environments (Lüdtke & Pierce, 2023). The future of fisheries management lies in the continued evolution of these digital systems, their integration with broader Earth system monitoring networks, and their adaptation to emerging challenges including climate change and increasing human pressures on marine ecosystems. Success will be measured not only by technological capabilities but by the contribution of these tools to sustainable fisheries, healthy marine ecosystems, and thriving coastal communities worldwide.

REFERENCES

Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K., Polovina, J. J., Huret, M., Dulvy, N. K., & Demarcq, H. (2011). Satellite remote sensing for an ecosystem approach to fisheries management. *ICES Journal of Marine Science*, 68(4), 651-666.

- Global Fishing Watch. (2023). Our technology: Revolutionizing the ability to monitor commercial fishing. Retrieved from https://globalfishing watch.org/our-technology/
- Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti, F., Wilson, A., Bergman, B., White, T. D., Block, B. A., Woods, P., Sullivan, B., Costello, C., & Worm, B. (2018). Tracking the global footprint of fisheries. *Science*, 359(6378), 904-908.
- Lüdtke, S., & Pierce, M. E. (2023). Towards machine learning-based fish stock assessment. *Proceedings of Fragile Earth Workshop 2023: AI for Climate Sustainability*. arXiv:2308.03403.
- MRAG Asia Pacific. (2021). The quantification of illegal, unreported and unregulated (IUU) fishing in the Pacific Islands region a 2020 update. Pacific Islands Forum Fisheries Agency.
- Tryolabs. (2025). AI on board: Near real-time insights for sustainable fishing. Retrieved from https://tryolabs.com/blog/ai-vessel-monitoring-fishing-industry

December 2025 158 | P a g e