

Zero Waste Farming: Transforming Agricultural By-products into Sustainable Resources

D. Deepika^{1*}, R. Jeyajothi² and T. Thamizharasu³

 ^{1,3}Research Scholar, Department of Agronomy, SRM College of Agricultural Sciences, Baburayanpettai - 603 203, Chengalpattu (Dt), Tamil Nadu.
²Assistant Professor, Department of Agronomy, SRM College of Agricultural Sciences, Baburayanpettai, Maduranthakam (Tk), Chengalpattu (Dt) - 603 201, Tamil Nadu.

Corresponding Author

D. Deepika Email: dd7202@srmist.edu.in

Reuse, By-products, zero waste, Sustainability

How to cite this article:

Deepika, D., Jeyajothi, R. and Thamizharasu, T. 2025. Zero Waste Farming: Transforming Agricultural By-products into Sustainable Resources. *Vigyan Varta* 6 (11): 162-164.

ABSTRACT

Zero Waste Farming is a new way to do sustainable agriculture that focuses on reusing agricultural waste and byproducts to reduce the impact on the environment and increase farm productivity. In India, where managing crop waste and soil degradation are major problems, using zero waste principles can help reduce pollution, improve soil health, create new sources of income, and support energy sustainability. This paper looks at the ideas, methods, benefits, problems, and recent uses of zero waste farming.

INTRODUCTION

griculture plays a big role in both harming the environment and helping the economy grow. Traditional farming methods often produce a lot of waste, like crop leftovers, animal waste, and horticultural byproducts, most of which is not used properly or thrown away. Every year, India produces about 500 million tonnes of crop residue. About 23 million tonnes of this is

burned, which causes a lot of air pollution and greenhouse gas emissions (ICAR, 2021).

Zero Waste Farming (ZWF) is a sustainable way to turn these byproducts into useful resources, which helps create a circular agricultural economy. The idea fits in with global goals for sustainability, such as carbon neutrality and resource efficiency, while also solving problems in local farming.

November 2025 162 | P a g e

2. The standards of zero waste farming Kumar. S *et al* (2020)

Four main ideas make up Zero Waste Farming:

- Resource Reutilization: All agricultural outputs, like crop residues, livestock waste, and water runoff, are reused or recycled.
- Integration: Putting together crops, livestock, aquaculture, and horticulture so that waste from one part can be used as input for another.
- Sustainable Resource Use: Using as few outside resources as possible, like chemical fertilizers and synthetic energy sources.
- Economic Circularity: Turning trash into useful things like compost, biochar, biogas, and organic manure that can be sold.

These rules make sure that farms work like self-sustaining ecosystems, which cuts down on their impact on the environment while keeping them productive.

3. Ways and uses

- 3.1 Taking care of crop waste: Farmers can turn crop biomass into compost, mulch, or biochar instead of burning it. Making biochar improves the fertility of the soil and stores carbon, which is good for both farming and the environment (Lehmann, 2007).
- 3.2 Making Energy and Biogas: Biogas can be made from animal and plant waste in anaerobic digesters. This gas can be used to run irrigation pumps, cooking stoves, or electricity generators. This lessens the need for fossil fuels and cuts down on methane emissions from organic matter that is breaking down.
- 3.3 Using worms to compost and organic manure: Using earthworms

(vermiculture), organic waste is turned into compost that is full of nutrients. This makes the soil more fertile, holds more water, and increases microbial activity.

- **3.4 Integrated Farming Systems (IFS):** IFS combines different parts of farming to make a closed-loop system. For example, fish pond sludge can be used as fertilizer for crops.
- 3.5 Innovative Technologies: Nano-fertilizers and biochar enrichment are two examples of technologies that improve nutrient use and soil health even more, making ZWF compatible with modern precision agriculture (Kotyal, K 2023)

4. Positive outcomes

Environmental Benefits: Less pollution in the air, less greenhouse gas emissions, and healthier soil.

Economic Benefits: Selling compost, bioenergy, or organic fertilizer can bring in more money.

Agronomic Benefits: Better soil fertility, water retention, and crop yield.

Benefits for the environment: It creates a circular, regenerative agricultural system that helps resources last longer.

5. Challenges

• Smallholder farmers don't know much about sustainable practices.

November 2025 163 | P a g e

- A lot of money is needed up front for composting units, bio-digesters, and biochar production systems (Priya, K et al 2025)
- There aren't enough policies and infrastructure in place to make these systems bigger.

To solve these problems, the government, public-private partnerships, and extension services must work together to train farmers and make it easier for them to adopt new ideas.

CONCLUSION

Zero Waste Farming is a major change in Indian farming that turns waste byproducts into useful resources. ZWF can improve soil health, energy efficiency, and economic resilience by using sustainable practices, new technologies, and the principles of a circular economy. India needs to use it widely in order to reach its goals for sustainable agriculture, protecting the environment, and improving rural areas. India has become a global leader in sustainable agriculture by using zero waste strategies. This shows that resource

optimization and environmental stewardship can go hand in hand with farm productivity and profitability.

REFERENCES

- ICAR. (2021). Annual Report on Agricultural Residue Management. Indian Council of Agricultural Research, New Delhi.
- Kotyal, K. (2023). Circular agriculture: Sustainable farming practices for zero waste. *Environmental Reports*, *5*(1).
- Kumar, S., & Sharma, P. (2020). *Integrated Farming Systems for Sustainable Agriculture in India*. Journal of Agricultural Studies, 8(2), 112–128.
- Lehmann, J. (2007). *Bio-energy in the Black*. Frontiers in Ecology and the Environment, 5(7), 381–387.
- Priya, K., Rani, J., & Gwal, S. (2025). Transforming agricultural residues to value-added products: waste to wealth. In Sustainable Management of Agro-Food Waste (pp. 69-85). Academic Press.

November 2025 164 | Page