

Micronutrients: Essential Components for Health and Well-Being

Manjula Chaudhari^{1*} Neethu T. M.² and Dinesh Chaudhary³

^{1,2}Assistant Professor, Department of Soil Science and Agricultural Chemistry, N. M. College of Agriculture, NAU, Navsari ³Assistant Professor, Office of the Director of Research, NAU, Navsari- 396450

Corresponding Author

Manjula Chaudhari Email: manjulaachaudhary21@gmail.com

Keywords

Micronutrients, Vitamins, Minerals, Macronutrients

How to cite this article:

Chaudhari, M., Neethu, T. M. and Chaudhary, D. 2025. Micronutrients: Essential Components for Health and Well-Being. *Vigyan Varta* 6 (11): 122-125.

ABSTRACT

Micronutrients are vital components required by humans and other living organisms in small quantities to maintain essential physiological functions necessary for overall health. Unlike macronutrients, which are needed in gram quantities each day, micronutrients are typically required in amounts less than 100 milligrams per day. Vitamins and minerals constitute two key categories of micronutrients. When used appropriately-within a safe dosage range and when the benefits outweigh potential risks—micronutrients can serve as supportive agents in the management of common infectious diseases and malnutrition.

INTRODUCTION

icronutrients are indispensable nutrients required by the human body in minute quantities to ensure proper physiological functioning and maintain overall health. Unlike macronutrients such as carbohydrates, proteins and fats that supply energy, micronutrients mainly consist of vitamins and minerals that facilitate numerous biochemical and physiological processes. They

are essential for maintaining immune function, supporting energy metabolism, promoting bone health and preventing various diseases. Common micronutrients include vitamins A, C, D, E and the B-complex group, along with minerals such as iron, calcium, zinc and magnesium. Although required in small quantities, deficiencies in these nutrients can lead to significant health challenges, including

November 2025 122 | P a g e

compromised immunity, cognitive impairment and heightened susceptibility to chronic diseases. Therefore, ensuring adequate intake through a balanced diet is crucial for sustaining optimal health (Shenkin, 2006; Gillespie, 2021; Arif *et al.*, 2024).

Types of Micronutrients

Micronutrients are essential nutrients required by the body in small amounts for proper functioning and overall health. They play crucial roles in various physiological including disease processes, growth, prevention and well-being. They are broadly categorized into two main groups: vitamins and minerals, each performing distinct but complementary functions in the body (Arif et al., 2024).

1. Vitamins

The term "vitamin" comes from the Latin "vita" (life) and "amine" (derived from ammonia), coined by Polish chemist Casimir Funk in 1912. He believed all these compounds were amines essential for life. Later, when not all vitamins were amines, the name was retained but the final "e" was dropped. Vitamins are organic compounds necessary for numerous metabolic processes. They are classified into two categories:

- A. Water-Soluble Vitamins: This group includes the B-complex vitamins (B1, B2, B3, B5, B6, B7, B9 and B12) and vitamin C. These vitamins are not stored in the body and must be replenished regularly through dietary sources. They are vital for energy metabolism, nerve function and immune health.
- B. **Fat-Soluble Vitamins:** Vitamins A, D, E and K fall into this category. They are stored in fatty tissues and the liver, playing essential roles in vision, bone development, antioxidant activity, and blood clotting. However, excessive intake may lead to

toxicity, underscoring the importance of moderation.

2. Minerals

Minerals are inorganic elements essential for structural and regulatory functions in the body. They are divided into two subcategories:

- A. **Major Minerals (Macrominerals):** These include calcium, phosphorus, potassium, sodium and magnesium. They are crucial for bone formation, muscle function and electrolyte balance.
- B. Trace Minerals (Microminerals):
 Required in smaller amounts, these include iron, zinc, copper, selenium and iodine.
 They play pivotal roles in enzymatic activities, immune regulation and hormone synthesis.

Importance of Micronutrients

Micronutrients are integral to maintaining physical and mental well-being. Their functions span multiple aspects of human physiology (Celep *et al.*, 2017):

- 1. Role in Body Function: Vitamins and minerals participate in nearly every metabolic process. They contribute to tissue maintenance, enzyme activity and the synthesis of essential biomolecules. For example, B vitamins facilitate energy production, while minerals like calcium and magnesium support muscle contraction and nerve signalling.
- 2. Immune Support: Certain micronutrients particularly vitamins A, C, D and E, along with zinc and selenium act as immune modulators. They enhance immune cell activity and protect against infections. Deficiency in these nutrients can compromise immune defense, leading to increased vulnerability to pathogens.

November 2025 123 | P a g e

- 3. Energy Production: B-complex vitamins serve as coenzymes in metabolic pathways that convert carbohydrates, fats and proteins into usable cellular energy (ATP). Minerals such as magnesium and iron also play key roles: magnesium activates energy-producing enzymes, while iron facilitates oxygen transport necessary for energy metabolism.
- 4. Bone and Muscle Health: Micronutrients like calcium, phosphorus, magnesium and vitamin D are essential for skeletal integrity. Calcium and phosphorus form the structural matrix of bones, while vitamin D ensures their proper mineralization. Magnesium supports bone turnover and aids in muscle function.
- and Cognitive **Function:** Micronutrients also support neurological health. Vitamins E and C and minerals such as zinc and selenium, protect neurons from oxidative stress. B vitamins are essential for neurotransmitter synthesis and brain metabolism. Adequate preserve micronutrient intake helps memory and cognitive function, especially with aging.

Common Micronutrient Deficiencies

Micronutrient deficiencies are widespread and can lead to various health issues if not addressed. These deficiencies often result from inadequate dietary intake, poor absorption, or increased physiological needs. Below are some of the most common micronutrient deficiencies and their impacts (Allen, 2025):

1. Iron Deficiency: Iron deficiency remains the most widespread nutritional disorder globally. It leads to anaemia, fatigue, and reduced cognitive performance. In children, it impairs development, while in pregnant women, it increases the risk of complications. Strategies to prevent iron deficiency include consuming iron-rich foods, supplementation and food fortification.

- 2. Vitamin A Deficiency: A lack of vitamin A can cause night blindness and increase susceptibility to infections. It is common in developing regions where diets lack animal products. Supplementation and the fortification of staple foods are proven methods to reduce deficiency rates.
- 3. Iodine Deficiency: Iodine is essential for thyroid hormone synthesis. Its deficiency leads to goiter and developmental impairments, particularly in children. Universal salt iodization has been one of the most effective public health measures to control iodine deficiency worldwide.
- 4. Vitamin D Deficiency: Vitamin D deficiency affects bone mineralization, resulting in rickets in children and osteomalacia in adults. Limited sunlight exposure and inadequate dietary sources are common causes. Safe sun exposure and fortified foods are effective preventive strategies.
- 5. Zinc Deficiency: Zinc deficiency weakens immune function and slows growth and wound healing. It is prevalent in populations consuming diets high in phytates, which inhibit zinc absorption. Increasing the consumption of animal-based foods and fortified products helps address this deficiency.

Ensuring Adequate Micronutrient Intake

It is crucial for maintaining optimal health and preventing deficiencies. A balanced diet rich in diverse foods can help meet your nutritional needs. Below are some strategies to ensure you get enough micronutrients (Arif *et al.*, 2024):

1. Balanced Diet

Consuming a diverse diet with fruits, vegetables, whole grains and lean proteins provides essential vitamins and minerals in bioavailable forms. Dietary diversity prevents multiple deficiencies and supports long-term health.

November 2025 124 | Page

2. Supplementation

In cases where diet alone cannot fulfil nutritional requirements, such as pregnancy, aging, or restricted sunlight exposure supplementation may be necessary. However, supplementation should be guided by healthcare professionals to prevent toxicity.

3. Monitoring Nutritional Status

Regular medical check-ups and blood tests help identify deficiencies early. Monitoring is especially important for vulnerable groups, including children, pregnant women and older adults.

CONCLUSION

Micronutrients, though required in small amounts, are fundamental for sustaining life and preventing disease. A balanced, nutrient-dense diet remains the best strategy for ensuring adequate intake. Understanding their roles, sources, and proper intake levels is vital to maintaining physical vitality, mental wellbeing, and long-term health.

REFERENCES

- Allen, L. H. (2025). Micronutrients— Assessment, Requirements, Deficiencies, and Interventions. *New* England Journal of Medicine, 392(10): 1006-1016.
- Arif, L.; Hamza, M.; Iqbal, E. and Kaleem, Z. (2024). Role of Micronutrients (Vitamins & Minerals). *International Journal of Multidisciplinary Sciences and Arts*, 3(2): 333-337.
- Celep, G. S.; Kaynar P. and Rastmanesh R. (2017). Biochemical functions of micronutrients. *Advances in Obesity, Weight Management Control*, 6(2): 43–45.
- Gillespie, J. (2021). "You are what You eat": The role of Dietary Macronutrients and Micronutrients in MAFLD. *Clinical Liver Disease*, 18(2): 67-71.
- Shenkin, A. (2006). The key role of micronutrients. *Clinical nutrition*, 25(1): 1-13.

November 2025 125 | Page