

Vol. 5, Issue 11

Cell Walls in Biotechnology: Applications, Innovation and Prospects

Rayees Ahmad Bhat¹, Sabuj Mondal¹, Ayyagari Ramlal², Dhandapani Raju⁴ and Ambika Rajendran^{3*}

 ¹Postgraduate Student, Department of Botany, University of Delhi, New Delhi, Delhi, India- 110007
 ²Research Scholar, School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown, 11800, Penang, Malaysia-11800
 ³Senior Scientist, Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Delhi, India-110012
 ⁴Senior Scientist, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, Delhi, India-110012

Corresponding Author

Ambika Rajendran Email: rambikarajendran@gmail.com

Keywords

Agriculture, Applications, Biotechnology, Biomass, Cell wall, Plants

How to cite this article:

Bhat, R. A., Mondal, S., Ramlal, A., Raju, D. and Rajendran, A. 2024. Cell Walls in Biotechnology: Applications, Innovation and Prospects. *Vigyan Varta* 5(11): 210-213.

ABSTRACT

Cell wall (CW) is present in all organisms such as bacteria, yeast, red algae, fungi, and plants except animals. It provides mechanical support, structural stability and protects the cell's internal structures. The CWs have a wide variety of applications in biotechnology, agriculture, paper & food industries, healthcare and biofuel production.

Summary : Cell walls have many biotechnological applications beneficial to agriculture & man and require further investigations and immense potential for innovations.

INTRODUCTION

obert Hooke (1665) observed the cork cells under a primitive microscope and named those cells 'cellula', later

called 'cells' and subsequently cell wall (CW). The plant CW is an elaborate extracellular matrix that encloses each cell. The CWs are Vigyan Varta www.vigyanvarta.com www.vigyanvarta.in

made up of thin cells, referred to as primary cell walls (PCWs) and later they mature and develop thickening due to the deposition of lignin, referred to as secondary cell walls (SCWs) (Alberts *et al.*, 2002; Delmer *et al.*, 2024).

Composition: Plant CWs are primarily composed of >90% polysaccharides such as cellulose and pectin along with non-cellulosic or hemicellulose (callose, β -1,3:1,4-glucan, xylan, xyloglucan and mannan), phenolic components and water, wall-associated proteins (proteins, glycoproteins, proteoglycans) (Delmer *et al.*, 2024).

Cellulose is the abundant insoluble polysaccharide macromolecule involved in maintaining the structural integrity of the walls.

Pectin is a heteropolysaccharide involved in expansion, adhesion, porosity, signalling and strength.

Hemicellulose provides mechanical support.

Bacterial CWs consist of peptidoglycan, a units network of multiple of Nacetylglucosamine and N-acetylmuramic acid (MurNAc) cross-linked with MurNAc residues through short peptide bridges. The fungal CWs (FCWs) are made up of several layers of fibrils. The compositions vary depending on species, however, they consist primarily $(1 \rightarrow$ 3)/(1 \rightarrow 6)- β -glucan, (1 \rightarrow 3)- α -glucan, chitin and glycoproteins. It consists of 80-90% glycoproteins, lipids and other minor components. The yeast CWs are made up of $(1 \rightarrow 3)/(1 \rightarrow 6)$ - β -glucan, mannoproteins and chitin. The red algae contain galactan heteropolymers with sulphite residues along with minor components like methylated sugars, mannose, arabinose and ribose. However. the basic building block is aldobiouronic acid 3-0-(a-dglucopyranosyluronic acid)-l-galactopyranose disaccharide

Structure: The CW surrounds plants' plasma membrane, providing tensile strength and protection against mechanical and osmotic stress allowing cells to develop pressure of the cell contents against the CW (turgor pressure) (Figure 1).

Functions: The primary functions of the SCWs are to withstand loss of turgor, protect against water loss and diseases, transport water and minerals. It behaves as a skeletal system for the cell supporting internal contents (Alberts *et al.*, 2002). Similarly, WAPs govern growth and development, cell expansion, division, signalling, embryogenesis, vascular and gametophyte development, biotic and abiotic stress-mediated responses (Delmer *et al.*, 2024). The FCWs protect cells from osmotic pressure, environmental stresses and maintain cell shape.

Diagrammatic representation of cell walls of A) Plants and B) Bacteria showing the comparison of the structural details of the cellulose fibrils & pectin and lipopolysaccharide & peptidoglycan layers, respectively. (**Figure 1**)

Significance of cell walls in biotechnology

As CWs contain cellulose and hemicellulose with the deposition of phenolic polymer, lignin forms a complex and rigid structure that provides mechanical strength. Properties of CWs like abundance, diversity, carbon-neutral and non-edibility make them industry suitable. Lignocellulosic biomass accounts for ~60%– 80% of dry matter yields in grasses and is primarily composed of SCWs made of cellulose (~25%–55%), hemicellulose (~20%– 50%) and lignin (~10%–35%) (Bhatia *et al.*, 2017) (Figure 2).

Figure 2: Applications of cell walls in different fields.

Vigyan Varta www.vigyanvarta.com www.vigyanvarta.in

Applications of cell walls in biotechnology

- 1) Energy and fuel production: The bioengineering strategy for the modification of CWs primarily relies on i) reprogramming of gene regulatory networks of lignocellulose biosynthesis ii) remodelling the chemical structure of CW polysaccharides and iii) expressing lignocellulose degrading and/or modifying enzymes. Polysaccharides harboured by plants are a good source for which biofuel is sustainable and renewable due to the abundance of lignin content (Bhatia et al., 2017). The lignin biosynthesis genes are downregulated to reduce the lignin deposition and to alter SCWs composition (Table 1).
- 2) Engineering for the food industry: Plant CWs are added to food as dietary fibres to improve health (Harris and Smith, 2006). Such polysaccharides are obtained from cotton and wood cellulose, dicotyledons pectin, cereals β-glucans and arabinoxylans, galactomannans, legume xyloglucans and pectic rhamnogalacturonan Ι non-lignified SCWs.
- Applications of bacterial cell wall hydrolases: Hydrolases control foodborne spoilage and detect bacterial pathogens.
- 4) Hemicellulose for different industries: The converted polymers used in thermoplastics, papermaking, coatings, pharmaceutics, cosmetics, hydrogels and fuels. These products are obtained through the hydrolysis of hemicellulose and produce intermediate products like hexoses and pentoses that gets modified into many high-value polymers such as 5hydroxymethylfurfural, polylactates etc.
- 5) **Yeast:** YCW is used in pharmaceuticals, bioremediation, enzyme immobilization,

veterinary, wine production, cosmetics and hydrogel production.

6) **Microalgal:** They have been used as antioxidants, broncho-dilating agents, plant growth stimulants & antimicrobial agents eg. $(1\rightarrow3,1\rightarrow6)$ - β -d-glucan from *Isochrysis galbana* show antitumor properties by inhibiting human leukemic monocyte lymphoma cell lines (U937).

Manipulation of cell wall composition for varied purposes

With the advances in identifying the genes involved in the biosynthesis of CWs, the manipulation of genes is of great interest in exploring their applicability in various fields (Figure 2).

Gene	Organism/Plant	Remark
CesA	Transgenic	Resulted in
	aspen (Populus	the silencing of both
	tremuloides)	transgene and
		endogenous genes
		and thereby resulted
		in reduced levels of
		cellulose
fs2 (brittle	Barley	The mutant (fs2)
stem		contains a
mutant)		retroelement in its
		first intron,
		HvCesA4 which
		interfered with the
		transcription and
		reduced the levels
		thus impacting
		cellulose
		crystallinity and
		stem strength
Brittle stem	Rice	The mutant
mutant		interfered with the
		levels of the gene,
		OsCesA4 thereby
		lowering the levels
		of cellulose but
		higher nutrition
		levels for ruminants.
anisotropy1	Arabidopsis	Normal levels of
(single		cellulose but
amino acid		reduced plant height
mutant of		and CW crystallinity
CesA)		
HvCslF6 +	Transformation	(1,3;1,4)-β-glucan
355	of barley with	content in leaves
	transgenic lines	increased from 3-
		fold to 4-fold
gux1gux2	Arabidopsis	Reduced overall

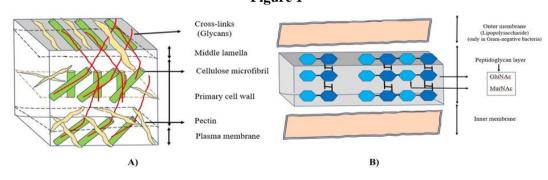
		xylan
HvCslF6 +	Barley	(1,3;1,4)-β-glucan
endosperm-		content
specific oat		
globulin		
promoter		

Table 1: Manipulation of CW components fordifferent purposes.

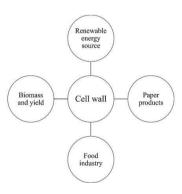
CONCLUSION AND FUTURE PROSPECTS

Cell wall modifications tend to increase the amorphous density and depth of cellulose microfibrils providing a solution to both biomass recalcitrance and plant strength (lodging resistance) through the co-expression and/or silencing of different types of genes for biomass production.

REFERENCES


Alberts, B., Johnson, A., Lewis, J., *et al.* (200). The Plant Cell Wall. *Molecular Biology of the Cell.* 4th edition. New York: Garland Science, Available from: https://www.ncbi.nlm.nih.gov/books/N BK26928/

Bhatia, R., Gallagher, J. A., Gomez, L. D., and Bosch, M. (2017). Genetic engineering of grass cell wall polysaccharides for biorefining. *Plant Biotechnology Journal*, 15(9)L1071-1092.


Delmer, D., Dixon, R. A., Keegstra, K., and Mohnen, D. (2024). The plant cell wall—dynamic, strong, and adaptable is a natural shapeshifter. *The Plant Cell*, 36(5):1257-1311.

Mishra, A., Mishra, T. K., Nanda, S., Mohanty, M. K., and Dash, M. (2023).
A comprehensive review on genetic modification of plant cell wall for improved saccharification efficiency. *Molecular Biology Reports*, 50(12):10509-10524.

Annexures Figure 1

