

Climate Change and Its Effects on Fish Growth and Physiology

Amrit Shadhana, Roshan Kumar Ram*, Sanjenbam Bidyasagar Singh, Pravesh Kumar, P.P. Srivastava and Ghanshyam Nath Jha

*College of Fisheries, Dholi, Muzaffarpur- 843 121, Bihar
Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur- 848 125, Bihar*

Corresponding Author

Roshan Kumar Ram

Email: roshan.cof@rpcau.ac.in

OPEN ACCESS

Keywords

Climate change, Ecosystem stability, Habitat conservation, Fisheries management

How to cite this article:

Shadhana, A., Ram, R. K., Singh, S. B., Kumar, P., Srivastava, P. P. and Jha, G. N. 2025. Climate Change and Its Effects on Fish Growth and Physiology. *Vigyan Varta* 6 (9): 149-158.

ABSTRACT

Climate change, driven by anthropogenic greenhouse gas emissions, poses significant threats to aquatic ecosystems, particularly impacting fish physiology, growth, reproduction, and distribution. This article explores how rising temperatures, ocean acidification, and declining oxygen levels affect fish by altering metabolic rates, reducing oxygen availability, and disrupting physiological and behavioral processes. Species-specific thermal tolerances and susceptibility to hypoxia and acidification influence growth rates, survival, and reproductive success, especially during early developmental stages. Additionally, shifts in habitat and migration patterns, the introduction of exotic species, and reduced breeding success threaten fish populations and ecosystem stability. The article also emphasizes the importance of adaptation and mitigation strategies, such as habitat conservation, sustainable fisheries management, marine protected areas, and emissions reduction. Understanding these multifaceted impacts is critical to developing resilient fisheries and aquaculture systems in the face of a rapidly changing climate.

INTRODUCTION

Climate change, driven primarily by anthropogenic greenhouse gas emissions, has emerged as a global crisis characterized by rising temperatures, shifting precipitation patterns, and an increased frequency of extreme weather events (IPCC, 2021). These environmental changes pose significant threats to ecosystems, biodiversity, and human societies. Among the most vulnerable groups to these changes are aquatic organisms, particularly fish, due to their high sensitivity to fluctuations in their surrounding environment (Doney *et al.*, 2012). Fish are vital to maintaining the ecological integrity of aquatic ecosystems, playing key roles in food webs and biodiversity regulation. Beyond their ecological importance, fish hold immense economic and nutritional value, forming the foundation of global fisheries and aquaculture industries that support millions of livelihoods. They also provide a crucial source of protein and essential micronutrients, especially in developing countries where fish is a dietary staple (Golden *et al.*, 2016). This article aims to explore how climate change affects the physiology and growth of fish. It focuses on key physiological processes, such as metabolism, oxygen demand, thermal tolerance, and growth rates, that are disrupted by changing environmental conditions. Gaining insight into these impacts is essential for developing adaptive strategies that ensure the sustainability of fish populations and the resilience of fisheries and aquaculture systems in an era of rapid climate change.

1. The Role of Temperature in Fish Physiology

Fish are ectothermic animals, which means their body temperature is regulated by external environmental conditions rather than internal mechanisms. As a result, water temperature plays a crucial role in governing their physiological processes. Key functions such as

metabolic rate, oxygen consumption, and overall energy balance are highly sensitive to temperature fluctuations (Pörtner & Peck, 2010). Even slight changes in water temperature can significantly impact fish health, behavior, and growth, making temperature a critical factor in their survival and ecological performance.

1.1 Effects of Rising Temperatures

Rising water temperatures have profound effects on fish physiology and behavior. As temperatures increase, fish experience higher metabolic rates, altered growth patterns, and reduced oxygen availability in their environment. These physiological stresses can weaken immune responses, disrupt reproductive cycles, and increase vulnerability to diseases. Additionally, warming waters may shift species distributions, disturb migration patterns, and alter the availability of food resources. These cascading effects pose serious threats to fish biodiversity and place considerable strain on global fisheries, potentially leading to ecological imbalances and reduced fishery productivity.

1.1.1 Increased Metabolic Rates

As water temperatures rise, fish generally exhibit increased metabolic rates due to the acceleration of biological processes. This heightened metabolism leads to greater energy demands, requiring fish to consume more food to maintain normal physiological functions. However, in environments where food availability is limited, meeting these increased energy needs can become challenging, potentially affecting growth, reproduction, and overall survival (Claireaux & Lefrançois, 2007).

1.1.2 Impact on Oxygen Consumption and Energy Allocation

As metabolic rates increase with rising temperatures, the demand for dissolved oxygen also intensifies. However, warmer water holds less oxygen, often leading to hypoxic conditions that can place significant stress on fish populations. In such environments, fish must allocate more energy to maintaining basic physiological functions, leaving less available for critical processes such as growth, reproduction, and immune response. This shift in energy allocation can reduce overall fitness, resilience, and survival (Nilsson *et al.*, 2010).

1.1.3 Potential for Thermal Stress and Mortality

When water temperatures exceed a species-specific threshold, fish experience thermal stress that can disrupt normal physiological functioning. This stress may lead to impaired growth, reduced reproductive success, and, in extreme cases, increased mortality. Elevated temperatures can interfere with cellular processes by altering enzyme activity, protein stability, and overall metabolic efficiency. Prolonged exposure to such conditions compromises the health and resilience of fish populations, potentially leading to long-term declines (Somero, 2012).

1.1.4 Species-Specific Temperature Tolerance Limits

Fish species exhibit varying levels of thermal tolerance based on their native habitats and evolutionary adaptations. Tropical species, for example, are often more accustomed to fluctuating temperatures and may possess greater resilience to heat. In contrast, cold-water species such as salmonids are highly sensitive to rising temperatures and are at greater risk under warming conditions. Understanding these species-specific thermal thresholds is essential for accurately predicting

the impacts of climate change and for developing targeted conservation and management strategies (Stillman, 2003).

2. Oxygen Availability and Hypoxia

Hypoxia, or reduced levels of dissolved oxygen in water, poses a significant threat to fish health and survival. Low oxygen conditions impair respiratory efficiency, reduce metabolic function, and often force fish to migrate in search of more suitable habitats. Hypoxia also disrupts reproductive processes, weakens immune responses, and increases mortality rates—especially in vulnerable life stages such as eggs and larvae. Contributing factors include poor water circulation, pollution, and the broader effects of climate change. Declining oxygen levels not only stress individual fish but also lead to habitat degradation and ecosystem imbalances, placing both fisheries and aquatic biodiversity at considerable risk.

2.1 Relationship Between Water Temperature and Oxygen Solubility

As water temperature increases, its ability to retain dissolved oxygen decreases. This inverse relationship is a critical concern for aquatic life, as fish and other organisms rely on adequate oxygen levels to support essential metabolic processes. Warmer waters, therefore, not only elevate metabolic demand but simultaneously reduce oxygen availability, intensifying physiological stress. This dual impact can significantly narrow the habitable range for many species and contribute to population declines, particularly in sensitive ecosystems (Breitburg *et al.*, 2018).

2.2 The Rise of Hypoxic Zones Due to Warmer Waters

The expansion of hypoxic zones, areas with critically low oxygen levels—is a growing concern driven by climate change and anthropogenic influences such as pollution and

agricultural runoff. Warmer waters not only retain less dissolved oxygen but also accelerate microbial decomposition processes, which further deplete oxygen concentrations. This intensification of hypoxia poses a significant threat to fish populations, particularly species with low tolerance to oxygen-poor environments. The increasing prevalence of hypoxic zones in freshwater and coastal ecosystems undermines biodiversity, disrupts food webs, and jeopardizes the sustainability of fisheries (Diaz & Rosenberg, 2008).

2.3 Impact of Low Oxygen Levels on Fish

Hypoxia, or low oxygen availability, induces physiological stress in fish, leading to slowed growth, impaired reproductive capacity, and heightened mortality rates. In response, fish may migrate to more oxygen-rich areas or modify their behavior to cope with the unfavorable conditions. In severe cases, prolonged exposure to low oxygen can result in suffocation. These effects disrupt aquatic ecosystems and pose serious challenges to the stability and productivity of fisheries.

2.4 Decreased Growth Rates

When oxygen availability is limited, fish prioritize vital physiological functions over growth, leading to smaller body sizes and slower developmental rates. This reduction in growth can trigger cascading effects on fish populations, including diminished reproductive success and altered predator-prey relationships. Such changes can ultimately affect population dynamics and ecosystem stability (Pauly & Cheung, 2018).

2.5 Altered Behavior and Migration Patterns

Fish exposed to hypoxic conditions often exhibit behavioral changes such as reduced activity levels, increased surfacing to access oxygen-rich water, and shifts in migration patterns. When species relocate to areas with

higher oxygen availability, it can lead to habitat disruption and altered ecological interactions, potentially destabilizing aquatic communities (Kramer, 1987).

2.6 Long-Term Survival Issues

Prolonged exposure to low oxygen levels weakens fish immune systems, increasing their vulnerability to diseases and shortening their lifespans. In severe cases, chronic hypoxia can trigger mass mortality events, severely impacting fish populations and the livelihoods of communities dependent on them for food and economic stability (Wu, 2002).

3. Ocean Acidification and Its Impact on Fish

Ocean acidification, driven by the increased absorption of CO₂ by seawater, affects fish in multiple ways. It can reduce growth rates, alter behavior, impair sensory functions, and decrease survival chances. Furthermore, acidification disrupts marine food webs and habitats, posing significant challenges to fisheries and the overall health of marine ecosystems.

3.1 Rising CO₂ Levels and Their Effect on Water pH

Ocean acidification results from the increased absorption of atmospheric carbon dioxide (CO₂) by seawater, leading to a decline in pH and the creation of a more acidic marine environment. This chemical shift poses significant challenges for marine organisms, particularly fish, by disrupting critical physiological processes such as acid-base regulation and ion balance that are essential for maintaining homeostasis.

3.2 Physiological Consequences of Acidification

Ocean acidification interferes with critical physiological functions in marine organisms,

disrupting enzyme activity, oxygen transport, nerve signaling, and cardiac performance. It can lead to muscle fatigue and bone weakening, while also impairing behaviors and the ability of shell-forming species to build and maintain their protective structures, ultimately affecting overall marine health and survival.

3.3 Disruption of Ion Regulation and Osmoregulation

Fish rely on tightly controlled ion transport and osmoregulatory mechanisms to maintain internal pH balance. Ocean acidification alters the concentrations of bicarbonate and hydrogen ions in their environment, disrupting these processes and potentially causing acidosis and metabolic stress. Such physiological imbalances can compromise fish health and reduce their capacity to withstand additional environmental challenges.

3.4 Impairment of Sensory and Cognitive Functions

New research reveals that ocean acidification negatively affects fish sensory and cognitive abilities, including predator recognition, foraging, and navigation. These changes are linked to altered decision-making and behavioral patterns, which may increase susceptibility to predation and reduce survival rates (Munday *et al.*, 2009).

3.5 Effects on Fish Growth, Development, and Reproduction

Ocean acidification has been shown to adversely affect fish growth and development, especially during early life stages. Larvae exposed to acidic conditions often experience slowed growth, skeletal deformities, and reduced survival rates. Additionally, acidification can disrupt reproductive processes such as egg fertilization and embryo development, potentially leading to long-term declines in fish populations.

4. Altered Fish Growth Rates and Size: Responses to Climate Change

Climate change influences fish growth and size through multiple interacting factors. Elevated temperatures accelerate metabolism but reduce oxygen availability, often resulting in smaller body sizes. Ocean acidification can impair bone development, while changes in food availability affect nutritional intake. Consequently, some species may exhibit faster growth rates yet remain smaller overall, whereas others experience stunted growth, reflecting varied responses across different fish populations.

4.1 Changes in Growth Patterns Due to Warmer Temperatures and Altered Food Availability

Fish growth is heavily influenced by environmental factors, particularly temperature and the availability of food resources. Rising temperatures typically increase metabolic rates, thereby elevating energy requirements (Cheung *et al.*, 2013). However, if food supply does not increase accordingly, energy limitations may slow growth. Additionally, shifts in prey distribution and abundance further contribute to variability in growth patterns (Pauly & Cheung, 2018). Many species exhibit optimal growth within a specific temperature range, beyond which metabolic inefficiencies arise, leading to reduced growth or stunted development (Neuheimer *et al.*, 2011).

4.2 Evidence of Stunted Growth or Accelerated Development in Response to Climate Stress

Experimental studies reveal that fish exhibit varied growth responses to climate stress, influenced by species-specific traits. Some species, particularly those from colder habitats, experience stunted growth coupled with earlier maturation as temperatures rise (Barneche *et al.*, 2018). Conversely, highly

adaptable species may accelerate their development to complete life cycles before environmental conditions become unfavorable (Lefevre *et al.*, 2017). These alterations can profoundly affect ecological interactions, reshaping predator-prey relationships and overall ecosystem stability.

5. Impact on Fish Reproduction and Development

Environmental changes such as rising temperatures and ocean acidification disrupt fish reproduction by altering spawning cycles, reducing egg viability, and impairing larval development. Additionally, hypoxia and pollution decrease fertility rates, while habitat degradation compromises critical breeding grounds, collectively contributing to population declines.

5.1 Shifts in Reproductive Cycles Due to Temperature Changes

Climate change has altered the reproductive cycles of many fish species. Rising temperatures can shift spawning seasons, leading to earlier or delayed reproduction (Dufresne *et al.*, 2009). Such changes in reproductive timing may cause mismatches between larval fish and the availability of their prey, ultimately reducing survival rates (Pankhurst and Munday, 2011).

5.2 Effects on Egg Viability, Larval Survival, and Juvenile Development

Elevated temperatures can decrease egg viability, leading to higher mortality rates and developmental abnormalities (Green & Fisher, 2004). Larval fish are particularly vulnerable to thermal stress; while warmer conditions may accelerate growth, they often result in reduced overall survival (Donelson *et al.*, 2011). Additionally, juveniles exposed to suboptimal temperatures may experience

slower growth, placing them at a competitive disadvantage in their environment (Rijnsdorp *et al.*, 2009).

5.3 Long-Term Population Impacts, Including Potential Declines in Fish Stocks

Reduced larval survival, slowed juvenile growth, and altered reproductive cycles can contribute to long-term declines in fish populations (Munday *et al.*, 2008). Such decreases threaten fisheries yields, impacting food security and economic stability, especially for communities reliant on vulnerable species (Brander, 2010). Recognizing these shifts is crucial for developing adaptive management strategies aimed at mitigating the effects of climate change on fish stocks.

6. Distribution and Migration Shifts

Climate change and ocean warming are causing fish to migrate toward cooler waters, altering their natural distribution patterns. These shifts disrupt ecosystems and fisheries, leading to conflicts over fishing rights and economic losses in affected communities, which in turn threaten food security.

6.1 Influence of Rising Temperatures and Habitat Changes on Fish Distribution

Increasing temperatures in freshwater and marine ecosystems are forcing fish to migrate in search of optimal thermal conditions. As a result, many species are shifting to deeper waters or moving toward higher latitudes, disrupting long-established ecological balances (Perry *et al.*, 2005). Additionally, habitat alterations, such as coral reef degradation and changes in river flow patterns, further influence distribution, compounding the effects of climate change on aquatic biodiversity (Cheung *et al.*, 2009).

6.2 Impact on Migratory Species and Breeding Sites

Highly migratory species like salmon and tuna are particularly vulnerable to the effects of climate change on their movement patterns and breeding habitats. Rising temperatures influence both the timing of migration and the suitability of spawning sites, potentially disrupting the alignment between reproductive cycles and the environmental conditions necessary for larval development (Jonsson & Jonsson, 2009). For example, higher river temperatures increase mortality rates in migrating salmon, while tuna species are forced to alter their migration routes in search of favorable feeding grounds.

6.3 Introduction of Non-native Species and Potential Ecosystem Disruption

The introduction of non-native species has increased as fish species move into new areas in response to climate changes. Predation pressures, resource competition with native species, and possible ecosystem imbalances can result from this (Rahel & Olden, 2008). According to Walther *et al.* (2009), several invasive species have the potential to outcompete native fish populations, lowering biodiversity and changing community dynamics. Understanding these shifts is essential for developing effective conservation strategies to mitigate adverse ecological impacts.

7. Adaptation and Mitigation Strategies in Fisheries Under Climate Change

Both fish populations and fisheries management systems must adapt to the escalating impacts of climate change, such as rising ocean temperatures, acidification, and reduced oxygen levels. Adaptation strategies focus on supporting the natural evolutionary responses of fish species to these changes, while mitigation efforts aim to reduce

anthropogenic stressors and preserve the resilience of marine ecosystems.

7.1 Natural Adaptation Potential

Different fish species are more or less able to adjust to shifting environmental conditions. Genetic adaptation is a process by which natural selection promotes characteristics that increase a species' chances of surviving in changed environments (Sunday *et al.*, 2014). Through physiological changes, for example, some fish populations have become more tolerant to temperature variations or hypoxia (Stillman, 2019). Furthermore, animals can adjust their behavior to deal with environmental stressors by changing their habitat use or spawning seasons (Pörtner & Peck, 2010). However, many species may not be able to adapt to the rapid climate change, which could result in population losses.

7.2 Fisheries Management for Species Protection

Effective fisheries management is essential for safeguarding vulnerable species. Ecosystem-based management (EBM) approaches enhance species resilience by incorporating environmental variability into conservation strategies, ensuring that management plans are adaptive and responsive to changing ecological conditions (Rice *et al.*, 2012).

8. Mitigation Strategies

There are various mitigation measures that have been proposed to address the root causes of climate change:

8.1 Conservation and Habitat Restoration

Fish species can find shelter and ecological equilibrium by preserving important habitats including mangroves, coral reefs, and freshwater breeding grounds (Hughes *et al.*, 2017). Mitigating the effects of climate change can also be accomplished through

restoration efforts that improve water quality and lower pollution inflow.

8.2 Policy and Climate Action

In order to mitigate the effects of climate change on fish populations, regulatory measures like lowering carbon emissions and implementing sustainable fishing methods are essential. International cooperation and policy frameworks should try to incorporate climate adaptation strategies into fisheries management (FAO, 2020).

8.3 Reducing Greenhouse Gas Emissions

Ocean acidification and warming can be minimized by limiting carbon emissions through the use of renewable energy, more efficient fishing vessels, and less dependence on fossil fuels (Gattuso *et al.*, 2015).

8.4 Creating Marine Protected Areas (MPAs)

MPAs enhance fish populations' resilience to environmental changes by acting as climate refuges, supporting biodiversity, and offering secure breeding grounds (Roberts *et al.*, 2017).

8.5 Sustainable Methods for Fishing

The long-term sustainability of fish stocks can be ensured through the use of environmentally friendly fishing gear, effective bycatch reduction techniques, and enhanced monitoring and regulatory measures (Fulton *et al.*, 2011).

CONCLUSION

Climate change has an immense effect on fish development and health, affecting ecosystems and fisheries. Warmer waters accelerate metabolism, increasing oxygen requirements and influencing growth. Ocean acidification weakened bones, while changes in salinity and food supply made survival more difficult. These challenges affect fish populations,

biodiversity, and the seafood sector. To safeguard aquatic life, we must reduce greenhouse gas emissions, properly manage fisheries, and increase conservation activities. Taking action is critical for the survival of fish and marine ecosystems.

REFERENCES

Barneche, D. R., Robertson, D. R., White, C. R., & Marshall, D. J. (2018). Fish reproductive-energy output increases disproportionately with body size. *Science*, 360(6389), 642-645.

Brander, K. (2010). Impacts of climate change on fisheries. *Journal of Marine Systems*, 79(3-4), 389-402.

Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., ... & Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. *Science*, 359(6371), eaam7240.

Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., & Pauly, D. (2009). Projecting global marine biodiversity impacts under climate change scenarios. *Fish and fisheries*, 10(3), 235-251.

Cheung, W. W., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W., Deng Palomares, M. L., ... & Pauly, D. (2013). Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. *Nature Climate Change*, 3(3), 254-258.

Claireaux, G., & Lefrançois, C. (2007). Linking environmental variability and fish performance: integration through the concept of scope for activity. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 362(1487), 2031-2041.

Dufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. *Proceedings of the National Academy of Sciences*, 106(31), 12788-12793.

Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. *science*, 321(5891), 926-929.

Donelson, J. M., Munday, P. L., McCormick, M. I., & Nilsson, G. E. (2011). Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. *Global Change Biology*, 17(4), 1712-1719.

Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., ... & Talley, L. D. (2012). Climate change impacts on marine ecosystems. *Annual review of marine science*, 4(1), 11-37.

Food and Agriculture Organization (FAO). (2020). *The state of world fisheries and aquaculture 2020: Sustainability in action*. FAO

Fulton, E. A., Smith, A. D., Smith, D. C., & Van Putten, I. E. (2011). Human behaviour: the key source of uncertainty in fisheries management. *Fish and fisheries*, 12(1), 2-17.

Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W., Howes, E. L., Joos, F., ... & Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios. *Science*, 349(6243), aac4722.

Golden, C. D., Allison, E. H., Cheung, W. W., Dey, M. M., Halpern, B. S., McCauley, D. J., ... & Myers, S. S. (2016). Nutrition: Fall in fish catch threatens human health. *Nature*, 534(7607), 317-320.

Green, B. S., & Fisher, R. (2004). Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. *Journal of experimental marine biology and ecology*, 299(1), 115-132.

Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B., ... & Scheffer, M. (2017). Coral reefs in the Anthropocene. *Nature*, 546(7656), 82-90.

Intergovernmental Panel on Climate Change (IPCC). (2021). *Climate change 2021: The physical science basis*. Cambridge University Press.

Jonsson, B., & Jonsson, N. (2009). A review of the likely effects of climate change on anadromous Atlantic salmon *Salmo salar* and brown trout *Salmo trutta*, with particular reference to water temperature and flow. *Journal of fish biology*, 75(10), 2381-2447.

Kramer, D. L. (1987). Dissolved oxygen and fish behavior. *Environmental biology of fishes*, 18, 81-92.

Lefevre, S., McKenzie, D. J., & Nilsson, G. E. (2017). Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. *Global Change Biology*, 23(9), 3449-3459.

Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratchett, M. S., Devitsina, G. V., & Døving, K. B. (2009). Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. *Proceedings of the National Academy of Sciences*, 106(6), 1848-1852.

Munday, P. L., Jones, G. P., Pratchett, M. S., & Williams, A. J. (2008). Climate change and the future for coral reef fishes. *Fish and Fisheries*, 9(3), 261-285.

Neuheimer, A. B., Thresher, R. E., Lyle, J. M., & Semmens, J. M. (2011). Tolerance limit for fish growth exceeded by warming waters. *Nature Climate Change*, 1(2), 110-113.

Nilsson, G. E., Östlund-Nilsson, S., & Munday, P. L. (2010). Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 156(4), 389-393.

Pankhurst, N. W., & Munday, P. L. (2011). Effects of climate change on fish reproduction and

early life history stages. *Marine and Freshwater Research*, 62(9), 1015-1026.

Pauly, D., & Cheung, W. W. (2018). Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. *Global change biology*, 24(1), e15-e26.

Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. *science*, 308(5730), 1912-1915.

Pörtner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. *Journal of fish biology*, 77(8), 1745-1779.

Rahel, F. J., & Olden, J. D. (2008). Assessing the effects of climate change on aquatic invasive species. *Conservation biology*, 22(3), 521-533.

Rice, J., Moksness, E., Attwood, C., Brown, S. K., Dahle, G., Gjerde, K. M., ... & Westlund, L. (2012). The role of MPAs in reconciling fisheries management with conservation of biological diversity. *Ocean & coastal management*, 69, 217-230.

Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C., & Pinnegar, J. K. (2009). Resolving the effect of climate change on fish populations. *ICES journal of marine science*, 66(7), 1570-1583.

Roberts, C. M., O'Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., ... & Castilla, J. C. (2017). Marine reserves can mitigate and promote adaptation to climate change. *Proceedings of the National Academy of Sciences*, 114(24), 6167-6175.

Somero, G. N. (2012). The physiology of global change: linking patterns to mechanisms. *Annual Review of Marine Science*, 4(1), 39-61.

Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. *Science*, 301(5629), 65-65.

Stillman, J. H. (2019). Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. *Physiology*, 34(2), 86-100.

Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H., & Reusch, T. B. (2014). Evolution in an acidifying ocean. *Trends in ecology & evolution*, 29(2), 117-125.

Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., ... & Settele, J. (2009). Alien species in a warmer world: risks and opportunities. *Trends in ecology & evolution*, 24(12), 686-693.

Wu, R. S. (2002). Hypoxia: from molecular responses to ecosystem responses. *Marine pollution bulletin*, 45(1-12), 35-45.