Vol. 6, Issue 2

Biotechnology in Muskmelon

Parmar Bhumika M.^{1*}, Bharai Radhika A.² and Bambhaniya Kinjal K.³

¹ASPEE College of Horticulture, Navsari Agricultural University, Navsari ²College of Horticulture, Sardarkrushinagar Dantiwada Agricultural University, Jagudan ³ASPEE College of Horticulture, Navsari Agricultural University, Navsari

Corresponding Author

Parmar Bhumika M. Email: bhumikaparmar1511@gmail.com

Musk melon, Transgene, Phenotypic trait, Somaclonal variation, Tissue culture

How to cite this article:

Bhumika, M. P., Radhika, A. B. and Kinjal, K. B. 2025. Biotechnology in Muskmelon. *Vigyan Varta* 6 (2): 20-22.

ABSTRACT

Musk Melon (*Cucumis melo* L.) is crop of Cucurbitaceae family. It is also known as Kharbuza. Musk melon is valued as a summer fruit. The chromosome no. of musk melon is 2n=24 and origin is Tropical Africa. It is stated to have a cooling effect on the body system. Further, it is a demulscent, diuretic and aphrodisiac. It is applied as a lotion in several skin conditions. The roots have emetic and purgative properties. Mature fruits of muskmelon are round in shape and 8-16 cm in diameter. Nevertheless some oblong, flat and oval fruit shaped varieties are also available. Immature fruits are used as vegetable and seeds are edible. The fruits of *C. angaria* (West Indian gherkin) is mostly used in pickles and also as a cooked vegetable. There is another form called snap melon (*Cucumis melo var. momordica*) found throughout India. It is consumed at full ripened stage.

INTRODUCTION

Improvement of Muskmelon using Conventional Breeding

onventional selection breeding method in muskmelon has led to a considerable varietal improvement. Strong sexual incompatibility barriers at the interspecific and intergeneric levels have restricted the use of that genetic potential to develop new and enhanced muskmelon cultivars

• Muskmelon plant improvement by traditional hybridization is slow and limited

to a restricted gene pool. It is possible to produce viable intraspecific muskmelon hybrids between wild type and commercial varieties, with the aim to transfer some particular muskmelon genetic traits, such as disease resistance to fungi, bacteria, virus and insects, or tolerance to environmental factors, such as salinity, flooding, drought, and high or low temperature, to commercial muskmelon varieties

Improvement of Muskmelon using Recombinant Technology

- Tissue culture techniques often depend upon the development of an efficient in vitro plant regeneration system, which are necessary for the breeding based on recombinant technology (Rubaiyat *et al.*, 2013).
- However, many attentions have given to tissue culture of the muskmelon than the closely related cucumber.
- Buds and shoots have been obtained in vitro directly from muskmelon cotyledons and indirectly from callus derived from cotyledons, root, hypocotyls and leaves.
- Embryogenesis in muskmelon directly from cotyledonary explants has also been reported. Shoot multiplication from apical or lateral buds of muskmelon was reported as forms of axillary multiplication (Thakur *et al.*, 2019).

Improvement of Muskmelon using by Polyploidization and Somaclonal Variation

- The ability of somatic embryos to develop into plantlets decreased in the following order: diploid>tetraploid>octaploid
- The tetraploid line of muskmelon production using somaclonal variation as well as colchicine treatment is important to production of a triploid muskmelon by

hybridization a tetraploid and diploid although nowadays the triploid is not good hybrid cultivar for commercial production (Guis *et al.*, 2013)

- Somaclonal variation could be used to obtain variants lines with low-temperature germinability in muskmelon. Changes in fatty acid patterns have been found in muskmelon callus tissue, as well changes in a repetitive DNA sequence during callus culture have been detected (Lin *et al.*, 2012).
- However, somaclonal variation has to be avoided in research, where genetic transformation is involved because genomic stability in transgenic plants has to be maintained in order to express the inserted transgene (Rubaiyat *et al.*, 2014).

Table 1: Genetic resources in muskmelon

Mass	Arka Jeet (High TSS variety),			
Selection	Arka Rajhans (Tolerant to			
~	powdery mildew), Pusa Madhuras,			
	MH-1 and Kashi Madhu (Long			
	storage capacity)			
	storage capacity)			
Pedigree	Pusa Sharbati, Hisar Madhur			
Method	i usa Sharbati, ilisar Wadhur			
Resistance	D orridoury mildorry DMD (
	• Powdery mildew : PMR-6,			
breeding	PMR-5, PMR-45, FM 5			
	• Downy mildew: Budama			
	types 1, 3 and 3, Annamalai			
	• Fusarium wilt: Golden			
	Gopher, Midget, Harvest			
	Queen and Delicious 51			
	Cucumber Mosaic Virus			
	Florida 67, PMR 6, Jacumba,			
	PMR Honey Dew, Durgapur			
	Madhu, Gulf Stream and			
	Kabul Melon			
	Cucumber green mottle			
	mosaic virus: VRM 5-10,			
	VRM-29-1, VRM-31-1, VRM			
42-4 and VRM 43-6				
	• Red pumpkin beetle : Cassba			

Vol. 6, Issue 2

Table 2: QTLs for important quality traitsreported in melon

Sr.	Population	QTLs Reported
No.	Used	
1.	Fruit shape	
	1. RILs	Ten QTLs
	2. NILs	Eleven QTLs: fruit
		length, 10 QTLs: fruit width
	3. RILs	Two QTLs for fruit
		length, 2 QTLs for fruit width
2.	Sugar content	
	of fruit flesh	
	in mature fruit	
	1. NILs	Nine QTLs for sweetness
	2. RILs	Six QTLs for sucrose,
		total soluble solids
3.	B. Ethylene	
	production in	
	fruit	
	(climacteric	
	crisis)	
	1. RILs	Four QTLs
	2. NILs	One QTL for ethylene
		production and
		climacteric response

Table3:Transgenicsdevelopedinmuskmelon for different traits

Transgene	Phenotypic trait	Cultivar
CMV-coat	Virus resistance	Prince
protein gene		
uidA gene	GUS Reporter	Galia
	gene	
ZYMV-coat	Potyvirus	Hale's
protein gene	resistance	Best
		Jumbo
CMV-white	Virus resistance	Harvest
leaf coat protein		Queen,
gene		Hearts of
		Gold and
		Topmark
Hal 1	Halotolerance	Pharo
Bar gene	Resistant against	Arava
	herbicides	
HAL 1 and TPS 1	Salt and Drought	Pharo
	tolerance	

CONCLUSION

The production of melon is top most level among fruits production by weight worldwide. In fruits including apple, strawberry, orange, grape, etc, the advanced technologies are applied very much for their improvement. Therefore, it is more urgent now to improve melon fruits production due to its yield at the highest level. A small-scale improvement in the melon production has achieved with the classical selection breeding technique

REFERENCES:

- Guis, M., Roustan, J. P., Catherine, D., Michel, P. and Pech, J. C. (2013). Melon Biotechnology. *Biotechnology and Genetic Engineering Reviews*, 15(1): 289-312.
- Lin, C. Y., Ku, H. M., Chiang, Y. H., Ho, H. Y., Yu, T. A. and Jan, F. J. (2012). Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct. *Transgenic Research*, 21:983–993.
- Rubaiyat, S. S. and Mahabubur, M. R. (2013). Biotechnological approaches of watermelon to meet the future challenges for next decades. *Advances in Bioscience and Bioengineering*, 1(2): 40-48.
- Rubaiyat, S. S. and Mahabubur, M. R. (2014). Melon crops improvement through biotechnological techniques for the changing climatic conditions of the 21st century. *International Journal of Genetics* and Genomics, 2(3): 30-41.
- Thakur, H., Sharma, S. and Thakur, M. (2019). Recent trends in muskmelon (*Cucumis melo* L.) research: an overview. *The Journal of Horticultural Science and Biotechnology*. 1-15.