

Role of Climate-Smart Agriculture in Reducing Agriculture-Induced Greenhouse Gas Emissions

Pritimayee Naik*

M.Sc. Scholar, Department of Agronomy, College of Agriculture, OUAT, Bhubaneswar, Odisha, India-751003

Corresponding Author

Pritimayee Naik

Email: naikpriti826@gmail.com

OPEN ACCESS

Keywords

Climate-smart agriculture, greenhouse gas emissions, sustainable farming, climate change mitigation, low-carbon agriculture

How to cite this article:

Naik, P. 2026. Role of Climate-Smart Agriculture in Reducing Agriculture-Induced Greenhouse Gas Emissions. *Vigyan Varta* 7 (01): 132-135.

ABSTRACT

Agriculture plays a dual role in the context of climate change, as it is both highly vulnerable to changing climatic conditions and a significant contributor to greenhouse gas emissions. Major agricultural sources of greenhouse gases include excessive fertilizer use, flooded rice cultivation, livestock production, crop residue burning, and intensive tillage practices (IPCC, 2019). Climate-Smart Agriculture (CSA) has emerged as a holistic approach to address these challenges by improving productivity, enhancing resilience to climate variability, and reducing greenhouse gas emissions. This article discusses the major sources of agriculture-induced greenhouse gas emissions and elaborates on climate-smart agricultural practices such as conservation agriculture, improved nutrient and water management, crop diversification, agroforestry, and sustainable residue and livestock management. Adoption of climate-smart agriculture can significantly reduce emission intensity while ensuring sustainable agricultural production (ICAR, 2020).

INTRODUCTION

Climate change poses a serious threat to global food security and agricultural sustainability. Agriculture is among

the most climate-sensitive sectors, as crop growth and livestock production depend heavily on weather conditions. At the same

time, agricultural activities contribute substantially to greenhouse gas emissions, particularly methane and nitrous oxide, which have much higher global warming potential than carbon dioxide (IPCC, 2019).

In India, intensification of agriculture to meet food demand has increased the use of chemical fertilizers, irrigation, and mechanization, leading to higher greenhouse gas emissions. Practices such as continuous flooded rice cultivation, burning of crop residues, and inefficient nutrient and livestock management have further intensified emissions. Climate-Smart Agriculture provides an integrated framework to address these issues (FAO, 2018).

Agriculture as a Major Source of Greenhouse Gas Emissions

Agricultural greenhouse gas emissions originate from various sources and processes. Nitrous oxide emissions mainly arise from excessive and inefficient use of nitrogen fertilizers. Methane emissions are predominantly associated with flooded rice fields and enteric fermentation in livestock. Carbon dioxide emissions result from land-use change, residue burning, excessive tillage, and fuel consumption in farm operations.

These emissions not only contribute to global warming but also reduce system efficiency by wasting nutrients, water, and energy. Addressing these emission sources through climate-smart interventions is essential for sustainable agriculture (ICAR, 2020).

Table 1. Major Sources of Greenhouse Gas Emissions in Agriculture

Source	Greenhouse gas	Main cause
Fertilizer application	Nitrous oxide (N ₂ O)	Nitrification and denitrification
Flooded rice cultivation	Methane (CH ₄)	Anaerobic decomposition
Livestock production	Methane (CH ₄)	Enteric fermentation

Crop residue burning	Carbon dioxide (CO ₂)	Combustion of biomass
Intensive tillage	Carbon dioxide (CO ₂)	Soil organic carbon loss

Concept and Objectives of Climate-Smart Agriculture

Climate-Smart Agriculture is an approach that integrates climate change adaptation and mitigation into agricultural development. It is based on three interlinked objectives: increasing agricultural productivity and income, enhancing resilience to climate variability, and reducing greenhouse gas emissions wherever possible (FAO, 2018).

CSA emphasizes location-specific solutions rather than universal recommendations. Practices promoted under CSA aim to improve efficiency of inputs, conserve natural resources, and reduce emission intensity per unit of agricultural output. Adoption of CSA is particularly important in developing countries where agriculture supports a large proportion of the population.

Climate-Smart Agricultural Practices for Reducing Emissions

1. Conservation Agriculture

Conservation agriculture involves minimal soil disturbance, permanent soil cover, and diversified cropping systems. Reduced tillage lowers fuel consumption and carbon dioxide emissions while enhancing soil organic carbon sequestration. Retention of crop residues improves soil health and eliminates the need for residue burning, thereby reducing carbon emissions.

Crop rotation under conservation agriculture improves nutrient cycling and reduces the requirement for chemical fertilizers, indirectly lowering nitrous oxide emissions. These

practices also enhance soil moisture retention and climate resilience (IPCC, 2019).

2. Improved Nutrient Management

Inefficient fertilizer use is a major contributor to nitrous oxide emissions. Climate-smart nutrient management focuses on balanced fertilization, site-specific nutrient application, and synchronization of nutrient supply with crop demand. Split application of nitrogen reduces losses through volatilization and leaching.

Integration of organic manures, green manures, and biofertilizers improves soil fertility and reduces dependence on synthetic fertilizers. Improved nutrient management not only lowers greenhouse gas emissions but also enhances fertilizer use efficiency and crop productivity (ICAR, 2020).

3. Water-Smart Rice Cultivation

Flooded rice cultivation is one of the largest agricultural sources of methane emissions. Climate-smart water management practices such as alternate wetting and drying (AWD), direct-seeded rice, and aerobic rice cultivation significantly reduce methane emissions by minimizing anaerobic soil conditions.

These practices also conserve irrigation water and reduce labor and energy requirements. Adoption of water-smart rice cultivation contributes to both mitigation and adaptation goals of climate-smart agriculture.

Table 2. Climate-Smart Practices and Their Mitigation Benefits

Practice	GHG reduced	Key benefit
Conservation tillage	CO ₂	Carbon sequestration
Balanced fertilization	N ₂ O	Improved nutrient efficiency
Alternate wetting and drying	CH ₄	Reduced methane emission

Crop diversification	N ₂ O	Lower fertilizer requirement
Agroforestry	CO ₂	Carbon storage

4. Crop Diversification and Cropping System Management

Crop diversification reduces emission intensity by improving overall system efficiency. Inclusion of legumes reduces nitrogen fertilizer requirement and associated nitrous oxide emissions. Intercropping and crop rotation enhance soil fertility and reduce dependency on external inputs.

Diversified systems are more resilient to climatic stress and often produce higher system productivity with lower environmental impact. Such systems play a vital role in reducing the carbon footprint of agriculture (FAO, 2018).

5. Agroforestry and Carbon Sequestration

Agroforestry integrates trees with crops and livestock, creating multifunctional production systems. Trees act as long-term carbon sinks by storing carbon in biomass and soil. Agroforestry systems also improve microclimate, reduce soil erosion, and provide additional income through timber, fuelwood, and fruits.

Agroforestry is considered one of the most effective climate-smart practices for reducing net greenhouse gas emissions while enhancing livelihood security.

6. Sustainable Residue and Livestock Management

Avoidance of crop residue burning is critical for reducing carbon dioxide emissions and air pollution. Recycling residues through mulching, composting, or incorporation improves soil organic matter and nutrient availability.

Improved livestock management practices such as better feeding strategies, improved breeds, and scientific manure management reduce methane emissions. Biogas production from livestock waste provides renewable energy and reduces reliance on fossil fuels (IPCC, 2019).

Table 3. Role of Climate-Smart Agriculture in Emission Reduction

CSA component	Mitigation mechanism
Conservation agriculture	Reduced fuel use and SOC loss
Nutrient management	Lower N ₂ O emissions
Water management in rice	Reduced CH ₄ emissions
Agroforestry	Carbon sequestration
Residue management	Avoidance of CO ₂ release

CONCLUSION

Agriculture-induced greenhouse gas emissions represent a significant challenge to climate change mitigation. Climate-Smart Agriculture

offers a practical and sustainable pathway to reduce emissions while maintaining productivity and resilience. Practices such as conservation agriculture, improved nutrient and water management, crop diversification, agroforestry, and sustainable residue and livestock management significantly lower the carbon footprint of agriculture. Strengthening extension services, research support, and policy interventions is essential for promoting climate-smart agriculture and achieving long-term sustainability.

REFERENCES

FAO. (2018). Climate-smart agriculture sourcebook. Food and Agriculture Organization of the United Nations.

IPCC. (2019). Climate change and land: An IPCC special report.

ICAR. (2020). Climate resilient agriculture in India. Indian Council of Agricultural Research, New Delhi.