

Agronomic Interventions for Mitigating Climate-Induced Yield Instability in Rainfed Agriculture

Ankita Mahanta*

*M.Sc. Scholar, Department of Agronomy, College of Agriculture, OUAT,
Bhubaneswar, Odisha, India-751003*

Corresponding Author

Ankita Mahanta

Email: ankitagu1235@gmail.com

OPEN ACCESS

Keywords

Rainfed agriculture, climate change, yield instability, agronomic practices, dryland farming

How to cite this article:

Mahanta, A. 2026. Agronomic Interventions for Mitigating Climate-Induced Yield Instability in Rainfed Agriculture. *Vigyan Varta* 7 (01): 91-94.

ABSTRACT

Rainfed agriculture is the backbone of Indian farming systems and supports a majority of small and marginal farmers. However, climate change has intensified rainfall variability, increased the frequency of droughts and heat stress, and disturbed normal crop growth patterns, leading to severe yield instability in rainfed areas. Yield instability reduces farm income, increases production risk, and threatens food and livelihood security. Agronomic interventions provide practical, economical, and farmer-friendly solutions to address these challenges. The present article discusses major climate-induced constraints affecting rainfed agriculture and elaborates on important agronomic interventions such as suitable crop and variety selection, cropping system diversification, soil and moisture conservation, integrated nutrient management, and weed control. Adoption of these agronomic practices can minimize climatic risks, improve resource-use efficiency, and stabilize crop yields in rainfed farming systems. Strengthening extension services and promoting climate-resilient agronomic packages are essential for sustainable rainfed agriculture under changing climatic conditions.

INTRODUCTION

Rainfed agriculture plays a vital role in Indian agriculture by contributing significantly to food grain, pulse,

oilseed, and millet production. Nearly two-thirds of the cultivated area in India depends directly on rainfall for crop production.

Despite its importance, rainfed agriculture remains highly vulnerable to climatic variability. Climate change has altered rainfall patterns, increased the occurrence of droughts and heat waves, and intensified extreme weather events (FAO, 2018; ICAR, 2019).

One of the major consequences of climate change in rainfed agriculture is yield instability, which refers to large fluctuations in crop yield from year to year. In rainfed regions, crop production depends entirely on the amount, distribution, and timing of rainfall. Even short dry spells during critical crop growth stages such as flowering or grain filling can cause substantial yield losses. As most rainfed farmers have limited access to irrigation and capital resources, they are highly exposed to climatic risks.

Stabilizing crop yields under rainfed conditions is therefore a key challenge for sustainable agriculture. Among various adaptation strategies, agronomic interventions are considered the most effective because they are low-cost, environmentally safe, and easily adoptable at the farmer level. This article elaborates on major climate-induced constraints in rainfed agriculture and discusses agronomic interventions that can help mitigate yield instability.

Climate-Induced Constraints in Rainfed Agriculture

Rainfed agriculture is highly vulnerable to climate variability because crop production depends entirely on rainfall. Climate change has led to erratic onset and withdrawal of monsoon, causing delayed sowing, poor crop establishment, and moisture stress during critical growth stages. Uneven rainfall distribution and frequent mid-season dry spells further reduce crop growth and lead to large fluctuations in yield (FAO, 2018).

Rising temperatures and frequent heat waves increase evapotranspiration and accelerate soil

moisture depletion, resulting in terminal drought and heat stress during reproductive stages. In addition, most rainfed soils have low organic matter and poor water-holding capacity, which limits their ability to retain moisture under erratic rainfall conditions. Climate-induced nutrient losses and reduced fertilizer use efficiency further aggravate yield instability. Together, these constraints increase production risk and threaten the sustainability of rainfed agriculture (ICAR, 2019; Rockström *et al.*, 2003).

Agronomic Interventions for Yield Stabilization

1. Crop and Variety Selection

Selection of appropriate crops and varieties is the most important agronomic intervention in rainfed agriculture. Crops with lower water requirements and better tolerance to drought and heat perform relatively well under moisture-limited conditions. Millets, pulses, and oilseeds are naturally adapted to rainfed environments and provide stable yields even under adverse climatic conditions.

Drought-tolerant and short-duration varieties help crops escape terminal drought and heat stress. Matching crop duration with expected rainfall patterns ensures that sensitive growth stages do not coincide with moisture stress. Adoption of locally adapted varieties further improves crop performance under variable climatic conditions.

2. Cropping System Diversification

Cropping system diversification reduces dependence on a single crop and minimizes the risk of total crop failure. Intercropping systems distribute climatic risk among different crops and ensure at least partial yield under adverse conditions. For example, cereal-legume intercropping systems provide better yield stability and improve soil fertility.

Crop rotation involving legumes improves soil structure, enhances nitrogen availability, and reduces pest and disease pressure. Diversified cropping systems also improve overall resource-use efficiency and resilience of rainfed farming systems. Contingency cropping plans during delayed monsoon enable farmers to adjust cropping choices based on rainfall conditions.

3. Soil and Moisture Conservation Practices

Efficient conservation of soil moisture is crucial for stabilizing yields in rainfed agriculture. Practices such as mulching, conservation tillage, contour farming, and ridge-furrow planting reduce runoff losses and improve moisture availability to crops.

Mulching with crop residues or organic materials reduces evaporation losses, moderates soil temperature, and improves soil organic carbon. Conservation tillage minimizes soil disturbance, enhances infiltration, and reduces soil erosion. These practices improve water-use efficiency and help crops withstand dry spells (Rockström *et al.*, 2003).

4. Integrated Nutrient Management

Moisture stress often leads to poor nutrient availability and low fertilizer use efficiency. Integrated nutrient management, combining organic manures and chemical fertilizers, improves soil fertility and nutrient synchronization with crop demand.

Organic amendments such as farmyard manure and compost improve soil structure, increase water-holding capacity, and enhance microbial activity. Split application of fertilizers reduces nutrient losses under uncertain rainfall conditions and ensures better nutrient uptake by crops. Balanced nutrition also enhances crop tolerance to drought and heat stress (FAO, 2018).

5. Weed Management

Weeds compete with crops for limited soil moisture, nutrients, and light, particularly during early growth stages. Under rainfed conditions, weed competition can severely reduce crop yields. Timely weed control through manual, mechanical, or cultural methods reduces moisture competition and improves crop establishment.

Early-stage weed management is especially critical, as it allows crops to utilize available soil moisture more efficiently. Effective weed control contributes significantly to yield stabilization in rainfed farming systems.

Table 1. Agronomic Interventions for Mitigating Yield Instability in Rainfed Agriculture

Agronomic intervention	Contribution to yield stability
Drought-tolerant varieties	Reduced crop failure
Intercropping	Risk distribution
Crop rotation	Improved soil fertility
Mulching	Soil moisture conservation
Conservation tillage	Reduced runoff and erosion
Integrated nutrient management	Improved nutrient efficiency
Timely weed control	Reduced moisture competition

CONCLUSION

Climate-induced yield instability is a major challenge threatening the sustainability of rainfed agriculture. Agronomic interventions offer practical, affordable, and effective solutions to mitigate climatic risks and stabilize crop productivity. Selection of suitable crops and varieties, diversification of cropping systems, soil and moisture conservation, integrated nutrient management, and timely weed control play a vital role in enhancing resilience of rainfed farming

systems (FAO, 2018; ICAR, 2019). Promotion of these practices through strong extension support and policy interventions is essential for ensuring food security, livelihood stability, and sustainable agricultural development in rainfed regions.

REFERENCES

FAO. (2018). Climate-smart agriculture sourcebook. Food and Agriculture Organization of the United Nations.

ICAR. (2019). Dryland agriculture research in India. Indian Council of Agricultural Research, New Delhi.

Rockström, J., Barron, J., & Fox, P. (2003). Water productivity in rainfed agriculture. *Physics and Chemistry of the Earth*, 28, 869–877.