

Recent Advances in Agricultural Machinery Optimization and Sensor-Based Tachometer Systems: A Review

Chadaram Madhav Kumar*, Dibakar Das and Moinuddin

*Department of Farm Machinery and Power Engineering, Faculty of Agricultural Engineering,
Bidhan Chandra Krishi Viswavidyalaya, Mohanpur-741252, Nadia, West Bengal.*

Corresponding Author

Chadaram Madhav Kumar
Email: madhavkumar1606@gmail.com

OPEN ACCESS

Keywords

Agricultural engineering, sensor-based tachometer, RPM measurement, fuel efficiency, PTO optimization, infrared sensor, Hall effect

How to cite this article:

Madhav K. Ch., Das, D. and Moinuddin. 2026. Recent Advances in Agricultural Machinery Optimization and Sensor-Based Tachometer Systems: A Review. *Vigyan Varta* 7 (01): 14-17.

ABSTRACT

The integration of mechanical innovation and digital sensor systems has transformed agricultural productivity and operational efficiency. This review synthesizes contemporary research focusing on three major domains: performance optimization of agricultural machinery, development of digital tachometers for RPM measurement, and comparative evaluations of sensor technologies. Studies indicate significant improvements in fuel economy, reduced crop damage, and accurate, non-contact RPM detection through sensor-microcontroller integration. The review highlights future directions such as IoT-based sensor networks and enhanced digital monitoring for sustainable agricultural mechanization.

INTRODUCTION

In recent years, precision agriculture has increasingly emphasized performance optimization and monitoring of mechanized systems. Power Take-Off (PTO)-driven machinery, such as threshers and harvesters, must operate efficiently to meet

production goals while minimizing costs and energy usage. A critical parameter in this context is the rotational speed (RPM), typically measured by digital tachometers. These systems now incorporate sensors like infrared (IR), Hall effect, and optocouplers,

often integrated with microcontrollers. This review explores research in agricultural machinery performance, development of tachometers, and evaluation of RPM sensing technologies.

1. Agricultural Machinery Performance and Optimization

1.1 Operational Efficiency of Machinery

The study by Al Sharifi *et al.* (2019) evaluated two corn shellers under various threshing speeds and grain moisture levels. The Local Corn Sheller 1 (LCS-Irs1) consistently outperformed its counterpart in productivity, power consumption, and grain quality, demonstrating the importance of selecting appropriate mechanical settings.

Khan *et al.* (2015) found that increasing the rotor speed of a vertical rotary axis harrow led to finer soil aggregates but also higher fuel consumption. Similarly, Özbek and Al-Sammarraie (2020) showed that using a 540E PTO setting significantly reduced fuel use in silage machines.

1.2 PTO Speed Adjustment for Fuel Economy

Patel and Raheman (2016) demonstrated how modifying engine RPM while maintaining PTO output using a belt and pulley system could reduce fuel consumption by up to 0.55 liters/hour. Their 2022 follow-up introduced a second-order polynomial model to determine optimal throttle positions, validated with a 4.62% prediction error and R^2 of 0.99.

1.3 Innovations in Harvesters and Threshers

Altermzey (2020) designed a tractor-mounted olive harvester with optimized PTO speed and vibration amplitude, achieving high productivity with minimal energy use. Aboegela and Mourad (2021) redesigned

peanut threshers with modified concaves and sieves, improving efficiency to 99.7% and minimizing pod damage.

2. Sensor-Based Tachometer Systems

2.1 Digital Tachometer Development

Kumar *et al.* (2019) and Niranjan *et al.* (2023) developed Arduino-based tachometers using IR sensors to detect pulse interruptions. Their systems offer low-cost, reliable, non-contact RPM measurement.

Fapetu *et al.* (2024) further enhanced accuracy by using optical sensors, achieving $\pm 1\%$ precision. Bhujel *et al.* (2024) introduced Bluetooth-enabled wireless RPM monitoring with $<0.3\%$ error at high speeds.

2.2 Sensor Integration and User Interface

Systems by Singh and Toma (2013) featured wireless data transmission for remote monitoring, while Cariappa *et al.* (2018) included LCD interfaces for on-site visualization. These enhancements support better operational awareness in agricultural settings.

3. Comparative Evaluation of Sensor Technologies

3.1 Performance Under Varying Conditions

Mahore *et al.* (2023) evaluated IR, inductive, Hall effect, and optical sensors under indoor and outdoor conditions. Hall effect sensors had the lowest error (0.55–1.03%), maintaining accuracy across all environments.

Amatullah *et al.* (2022) compared IR and optocoupler sensors on an Archimedes turbine, concluding that optocouplers provided better real-time accuracy.

3.2 Sensor-Based Innovations

Naik *et al.* (2016) used inductive proximity sensors with Arduino to detect metals and

monitor current-distance curves. Das and Nandy (2019) developed a contactless tachometer with Bluetooth data transfer for industrial monitoring.

CONCLUSION

Research shows that adjusting PTO speed, innovating thresher and harvester designs, and integrating advanced sensor systems can significantly enhance operational efficiency and sustainability. The future of agricultural mechanization lies in real-time monitoring via IoT networks, intelligent sensor selection, and adaptive control strategies. Future research should focus on:

- Field validation of sensor systems in crop-specific conditions.
- Unified microcontroller platforms for broader sensor compatibility.
- IoT integration for real-time monitoring and remote troubleshooting.

REFERENCES

Abagisa, H., Tesfaye, T. and Befikadu, D. (2015). Modification and testing of replaceable drum multi-crop thresher. *International Journal of Sciences: Basic and Applied Research (IJSBAR)*, 23(1), 242–255.

Aboegela, M. A. and Mourad, K. H. (2021). Development a locale thresher machine for separating peanut crop. *Journal of Soil Sciences and Agricultural Engineering*, 12(3), 131–135.

Al Sharifi, S. K. A., Aljibouri, M. A. and Taher, M. A. (2019). Effect of threshing machines, rotational speed and grain moisture on corn shelling. *Bulgarian Journal of Agricultural Science*, 25(2).

Altermzey, G. A. H. (2020). Manufacturing and performance evaluation of a tractor-mounted olive harvesting machine. *Egyptian Journal of Agricultural Research*, 98(3), 533–547.

Amatullah, E. N. A., Ekawita, R. and Yuliza, E. (2022). Comparison of infrared and optocoupler sensors performance for lab-scale RPM measurement system. *Indonesian Physical Review*, 5(2), 130–136.

Bhujel, S., Basnet, P., Khadka, T. B., Bhandari, T. R., Verma, V. and Dahal, C. (2024). Development and testing of non-contact and wireless tachometer. *Proceedings of 15th IOE Graduate Conference*, 15, 1062–1068.

Cariappa, P. K., Shweta, A., Pooja, D., Sudharani, B. T. and Geetha, M. N. (2018). Contactless tachometer. *International Journal of Engineering Research and Technology*, 6(13).

Das, S. and Nandy, R. (2019). Design and development of Arduino based digital RPM meter. *International Journal of Computer Sciences and Engineering*, 7(18).

Fapetu, O. F., Oladipo, Z. O., Ayodele, O. R., Nenuwa, I. O., Oloye, O. C. and Ogunyakin, N. A. (2024). Development of a digital tachometer using microcontroller and optical sensor. *International Journal of Advances in Engineering and Management*, 6(9), 800–803.

Khan, K., Moses, S. C., Ali, M. N. and Kumar, A. (2015). Effect of rotor speed of vertical axis rotary harrow on mean weight diameter of soil aggregates and fuel consumption. *Trends in Biosciences*, 8(11), 2845–2849.

Kumar, A. S., Venkatesh, C. and KVDP, S. B. (2019). Digital tachometer using

Arduino. *International Journal of Trend in Scientific Research and Development.*, 3, 1341–1342.

Mahore, A., Kumar, M., Kushwaha, H. L., Choudhary, M. K., Nalawade, R. and Patel, A. (2023). Development and performance assessment of real-time rotational speed measurement system for agricultural application. *International Journal of Plant & Soil Science.*, 35(4), 51–57.

Naik, A. A., Naik, D. A., Naik, S. S., Naik, S. D. and Pereira, R. G. (2016). Inductive proximity sensor interfaced with Arduino. *International Journal of Science Technology and Engineering (IJSTE).*, 2(9).

Niranjan, A., Reddy, G. M. and Nagesh, B. (2023). Digital tachometer using Arduino and IR sensor. *International Research Journal of Modernization in Engineering Technology and Science.*, 5(6).

Özbek, O. and Al-Sammarrat, M. A. J. (2020). Determination of operating characteristics of 540 and 540e PTO applications in disc type silage machines. *Turkish Journal of Agriculture-Food Science and Technology.*, 8(8), 1692–1696.

Patel, M. and Raheman, H. (2016). An approach for power generation with reduced fuel consumption using PTO driven generator. *Current World Environment.*, 11(2), 544–553.

Patel, M. and Raheman, H. (2022). A mathematical model of tractor PTO power for selecting optimum throttle position for best fuel economy. *International Archives of Applied Sciences and Technology.*, 13(1), 38–42.

Singh, N. and Toma, R. S. (2013). Design of a low-cost contact-less digital tachometer with added wireless feature. *International Journal of Innovative Technology and Exploring Engineering (IJITEE).*, 3(7), 21–23.